
PHPReports Manual

Eustaquio “TaQ” Rangel (eustaquiorangel@yahoo.com)

January 7, 2005

This document will guide you to download, install, configure and run PHPReports. It will
be a complete guide of all its features, showing how to you can use and how can you cre-
ate or modify it to fit your needs. You can download recent copies of this document on
http://phpreports.sf.net.

Thanks for my two girls, Ana Carolina and Ana Isabella, for their patience on the hours
I expend on this project.

This document was made using LATEX.

2

Contents

1 What and how 5
1.1 What is PHPReports? . 5
1.2 What is needed to use it? . 5
1.3 Does i need to pay you to use it? . 6
1.4 Tell me how it works . 6

2 Installation 9
2.1 How install and check all the stuff . 9

3 Creating your reports 13
3.1 Put some data there . 13
3.2 The XML report layout file . 14
3.3 The PHP code . 15
3.4 Making your report looks better . 18
3.5 Let there be colors . 20
3.6 The page element . 23
3.7 Sub groups . 25
3.8 The grand total . 29
3.9 Playing with the report . 30
3.10 Links . 36
3.11 Images . 38
3.12 Bookmarks . 39

4 Output plugins 41
4.1 What is an output plugin? . 41
4.2 Default output plugin . 43
4.3 Bookmarks output plugin . 43
4.4 Page output plugin . 44
4.5 TXT output plugin . 46
4.6 Creating your own output plugins . 46
4.7 The XML report data file . 48

5 Some other things you need to know 49
5.1 Setting your parameters from the PHP code . 49
5.2 Organizing your directory structure . 50
5.3 Breaking groups with more than one expression . 51
5.4 Save your report . 51
5.5 Restore your report . 51
5.6 Some few words about file integrity . 52
5.7 Exchanging formats . 52
5.8 Trying to make things faster . 53
5.9 Reuse your XML data . 54
5.10 Previewing your report . 55
5.11 Passing string parameters to your report . 55
5.12 Passing objects parameters to your report . 56

3

5.13 Inserting XHTML or PHP code into your COL . 57
5.14 Subreports . 60

6 API 61
6.1 Functions . 61

6.1.1 Functions you can use inside the COL element . 61
6.1.2 Functions you can use in your PHPReportMaker object 62

6.2 XML . 66
6.2.1 REPORT . 66
6.2.2 CSS . 66
6.2.3 FORM . 66
6.2.4 DOCUMENT . 66
6.2.5 HEADER . 67
6.2.6 FOOTER . 67
6.2.7 ROW . 67
6.2.8 COL . 67
6.2.9 PAGE . 67
6.2.10 GROUPS . 68
6.2.11 GROUP . 68
6.2.12 FIELDS . 68
6.2.13 LINK . 68
6.2.14 BOOKMARK . 69
6.2.15 IMG . 69
6.2.16 XHTML . 69

7 FAQ 71

4

Chapter 1

What and how

1.1 What is PHPReports?

PHPReports is a set of PHP classes, XML instructions and XSLT scripts to transform the XML file into
PHP code. The generated PHP code will be used with the PHP classes.
I started the idea when I needed to make all the stuff we use on programs like Visual Basic and Foxpro
on the browser, and one of the things that I didn’t found was how to make and print reports, using a
SQL query, on a easy (not so easy but) way, using the browser.
Nowadays it runs fine here where I work, and I hope it could be usefull for you guys too.

Important note: I’m writing this info based on the 0.2.0 version. Users of previous versions
will be warned about new features and some little fix stuff they need to make the 0.2.0 +
version to work.

Another VERY IMPORTANT note: Despite the fact that PHP can run on a lot of
different operational systems and webservers, this software run better using Linux as oper-
ational system and Apache as the webserver.
This does not say that you won’t be allowed to run it on another configuration, but I can’t
guarantee that it will be 100% fully operational. Some dudes need to hack the code on some
Windows installations.
But on a Linux/Apache system, it runs fine, and very fine. :-)

1.2 What is needed to use it?

You need a Apache server (http://www.apache.org) with PHP (http://www.php.net) support
compiled with XML/XSLT support.
I use the Sablotron libs to make this (http://www.gingerall.com/charlie/ga/xml/p sab.xml) on
PHP4.
On PHP5, the developers changed the Sablotron extension to the new XSL extension
(http://www.php.net/manual/en/ref.xsl.php), and it seems to run better on Windows environ-
ment than Sablotron.

5

1.3 Does i need to pay you to use it?

Hell, no. It’s under the GPL, you don’t need to pay. Just follow the GPL rules and everybody will be
happy.
I really was needing some way to contribute to the open source community, and I hope it was just the
beginning.
If you really loved PHPReports and want to make some kind of donation or stuff, you can see my Amazon
wish list at http://www.amazon.com. Just search for Eustaquio Rangel there. :-) Or you can donate
via PayPal, on the Sourceforge site (http://sourceforge.net/projects/phpreports/). Or what the
hell, send me a postcard from where you live. :-)

1.4 Tell me how it works

I heard one day a very wise teacher says that ”the purpose of a good documentation is that you don’t
need the author fixed on it, on your bookshelf”. I’ll try to do the best I can to make it come true, so
here we go.
A report, on PHPReports or any other program that deal with that, have always some divisions. I call
it:

• the document layer

• the page layers

• the group layer

You just have one document layer, one page layer (you can have a lot of pages, but just one page
layer to configure) and some group layers.
All these layers collect information about the data on your report, like the number of lines, statistics
about the fields and so on.

The document layer stores ALL these statistics, and stores it till the report end.
The page layer stores it till the page end, and reset it there.
The group layer stores it till the end of group, let me translate here group as a set of data defined by
a break expression, which could be any kind of field contained on your data set.

Each layer have its own header and footer. The group layer have one more division where it shows
the data info. If you have more than one group (even when you have just a simple report, you need to
add one group to deal with your info), the most internal group will show you the data, the other ones
can show it too, but its your choice. Let me try to draw the full thing here:

Figure 1.1: All the layers

Got it? The document contains page, page contains groups, and a group can contain another group.

6

One rule on that case is that the break expression of the inner group must contain the break expression
of the group above. On the example, the first group break when A changes, and the second group breaks
when A or B changes.

When this happens, its fired an event that notify that the group needs to print its footer and header,
and all the other groups related to it are notified too, to make what needs to be done.

7

8

Chapter 2

Installation

2.1 How install and check all the stuff

Let me ask you about some things before we continue.

a) Are you using Windows to run PHP and PHPReports?
So it’s better you run it using PHP5, because PHP5 have XSL support (but need to be compiled with
that) and works fine on Windows. Check if the XSL support is enabled with your phpinfo() function. If
you’re using binary files, and XSL support is not enabled, you’ll need to compile source code. If you’re
using PHP4, you can also install Sablotron (see below) on Windows, but I’m not sure it will works on a
nice way. Some guys had some problems with it.

b) Are you using Linux, with a precompiled PHP5 package?
So you need to check if there is XSL support compiled. Check your phpinfo(). If not XSL enabled there,
you’ll need to compile PHP.

c) Are you using Linux, with a precompiled PHP4 package?
Oh-oh, support for XSL transformations on PHP4 is just provided by Sablotron (see below). You’ll
need to remove your PHP4 package and compile the sources, with Sablotron installed (as a package or
compiling it’s source code).

d) Are you compiling the source code?
So you’ll have no problems.

Ok, you need to make sure your web server environment is ok. Apache is installed correctly? So, proceed.

Now its time to install Sablotron, if you use PHP4. I always compile the Sablotron sources, but I
think you can install it with some kind of package (RPM etc). You can check
http://www.gingerall.com/charlie/ga/xml/x sabphp.xml for more information.

If you use PHP5, you need to compile PHP5 with XSL support (http://www.php.net/manual/en/ref.xsl.php).
So now its all installed, Apache, PHP and Sablotron/XSL. Now you need the PHPReports files.
Go to http://phpreports.sourceforge.net, click on the download link and download the latest ver-
sion you see there.

Let’s unpack the package. Go to your desired location and unpack the PHPReports file:

tar xvzf phpreports < versionhere >.tgz

Or use other tool you like to do that.
This will provide you this directory tree:

phpreports

9

+-- css
+-- database
+-- docs
+-- img
+-- output
+-- php
+-- xslt

Lets take a look on it:

The css directory have some samples css files used on the samples.
The database directory stores the database interfaces.
The docs directory is supposed to include this kind of file you’re reading. ;-)
The img directory have some images used on the samples.
The output directory is where the output plugins are. We’ll talk about output later.
The php directory is where the PHP code are.
The xslt directory is where the XSLT files are.

You need to set where you put the PHPReports classes. Suppose you put your classes under

/usr/lib/phpreports

so you can choose to put this path inside your php.ini file and restart your web server (I think this way
is better) or put a ini set() call before using some PHPReports class, like this:

<?php
ini set("include path",ini get("include path").":/usr/lib/phpreports/");
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();

?>

Now we’ll make a simple test to see if your XSLT processor is working.

If you use Sablotron

Open a console, go to the PHPReports directory and type:

sabcmd xslt/sabtest.xsl sabtest.xml

Your output should looks like:

Congratulations!
Sablotron is working properly.

Now its time to test the XSL transformation on the PHP code. Open a console and go to <phpreports home>/php
and type:

php sabtest.php

You must see the same result as above.
And what about it fail and gives you some kind of error? If it fails on the console, you should check your
Sablotron installation. If it works on the console and fail on the browser, you should check if PHP was
compiled correctly with Sablotron support. A good hint maybe the phpinfo() function, it should have
something like this:

xslt
XSLT support enabled
Backend - Sablotron

10

HOT TIP If you got a message like unknown encoding ’ISO-8859-1’, it’s about the en-
coding I use for latin characters. Maybe you don’t need it, but it works fine on the most
cases.
Some people told me that they have some trouble with it running on Windows machines,
but I don’t have a idea on how to fix it on Windows .
If you have problems, please check http://www.gingerall.com/charlie/ga/xml/x sabphp.xml
for more info and help on how to install/compile Sablotron.

If you use XSL

On this case phpinfo() should return something like this:

xsl
XSL enabled
libxslt Version 1.0.27
libxslt compiled against libxml Version 2.5.4
EXSLT enabled
libexslt Version 1.0.27

Open a console on your <phpreports home>/php and type:

php xsltest.php

Your output should looks like:

Congratulations!
XSL is working properly.

You can run it also on the command line, with Python:

python xsltest.py

should returns the same result as above.

11

12

Chapter 3

Creating your reports

3.1 Put some data there

Let’s start our work. We’ll create a report with some customers, grouped by city, and list all the products
they bought, grouped by product type.
Create a table like this on your database (I know the table design is horrible but it is just for our
example):

mysql> desc sales;

+-------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------------+------+-----+---------+-------+

| city | varchar(50) | YES | | NULL | |

| name | varchar(50) | YES | | NULL | |

| type | varchar(10) | YES | | NULL | |

| item | varchar(50) | YES | | NULL | |

| value | decimal(15,2) | YES | | NULL | |

+-------+---------------+------+-----+---------+-------+

This table was based on mysql, please create it on your database way. So, let’s put some values there:

mysql> select * from sales;

+-----------+------------------+------+--------------------+-------+

| city | name | type | item | value |

+-----------+------------------+------+--------------------+-------+

| Rio Preto | Eustaquio Rangel | CD | This is the CD 1 | 10.00 |

| Rio Preto | Eustaquio Rangel | CD | This is the CD 2 | 20.00 |

| Rio Preto | Eustaquio Rangel | CD | This is the CD 3 | 30.00 |

| Rio Preto | Eustaquio Rangel | Book | This is the book 1 | 40.00 |

| Rio Preto | Eustaquio Rangel | Book | This is the book 2 | 50.00 |

| Rio Preto | Ana Carolina | CD | This is the CD 1 | 10.00 |

| Rio Preto | Ana Carolina | CD | This is the CD 2 | 20.00 |

| Rio Preto | Ana Carolina | Book | This is the book 1 | 30.00 |

| Rio Preto | Ana Carolina | Book | This is the book 2 | 40.00 |

| Rio Preto | Ana Carolina | Book | This is the book 3 | 50.00 |

| Rio Preto | Ana Carolina | Book | This is the book 4 | 60.00 |

| Rio Preto | Ana Carolina | Book | This is the book 5 | 70.00 |

| Sao Paulo | Andre Kada | CD | This is the CD 1 | 10.00 |

| Sao Paulo | Andre Kada | CD | This is the CD 2 | 20.00 |

| Sao Paulo | Andre Kada | CD | This is the CD 3 | 30.00 |

| Sao Paulo | Andre Kada | CD | This is the CD 4 | 40.00 |

| Sao Paulo | Andre Kada | CD | This is the CD 5 | 50.00 |

| Sao Paulo | Andre Kada | Book | This is the book 1 | 50.00 |

| Sao Paulo | Andre Kada | Book | This is the book 2 | 60.00 |

| Sao Paulo | Andre Kada | Book | This is the book 3 | 70.00 |

| Mirassol | Marcio Lambary | CD | This is the CD 1 | 10.00 |

| Mirassol | Marcio Lambary | CD | This is the CD 2 | 20.00 |

| Mirassol | Marcio Lambary | CD | This is the CD 3 | 30.00 |

| Mirassol | Marcio Lambary | Book | This is the book 1 | 40.00 |

+-----------+------------------+------+--------------------+-------+

13

3.2 The XML report layout file

Now we have something to work with. I’ll create a very basic report layout file now, called sales.xml:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE REPORT SYSTEM "PHPReport.dtd">

<REPORT MARGINWIDTH="5" MARGINHEIGHT="5">

<TITLE>Sales Report</TITLE>

<BACKGROUND COLOR>#FFFFFF</BACKGROUND COLOR>

<SQL>select CITY,NAME,TYPE,ITEM,VALUE from sales order by CITY,NAME,TYPE,ITEM</SQL>

<INTERFACE>mysql</INTERFACE>

<CONNECTION>localhost</CONNECTION>

<DATABASE>phpreports</DATABASE>

<NO DATA MSG>No data was found, check your query</NO DATA MSG>

<PAGE BORDER="1" SIZE="10" CELLSPACING="0" CELLPADDING="5">

</PAGE>

<GROUPS>

<GROUP NAME="main">

<FIELDS>

<ROW>

<COL TYPE="FIELD">CITY</COL>

<COL TYPE="FIELD">NAME</COL>

<COL TYPE="FIELD">TYPE</COL>

<COL TYPE="FIELD">ITEM</COL>

<COL TYPE="FIELD">VALUE</COL>

</ROW>

</FIELDS>

</GROUP>

</GROUPS>

</REPORT>

The first thing you need is the XML declaration. A valid XML file must have it. The encoding
parameter there is the encoding I use for Latin characters, maybe you’ll need to change it if your system
don’t support or allow it. The DOCTYPE tag is about the PHPReport.dtd file, used to validate your
XML document.
If you don’t understand the XML stuff, there is some cool tutorials on the internet to teach you the
basics, and believe me, learn XML worths a lot.
You can notice the REPORT element. It’s the main element there and where we’ll define or report
layout. I’ll explain all the parameters of REPORT and of other elements later. By now, we’re telling the
report generator that our report have a margin width of 5 pixels and a margin height of 5 pixels too.
The same way of HTML stuff, and you’ll see a lot of other HTML related stuff as we are going on.
Next, inside the REPORT element, we have our report TITLE, the BACKGROUND COLOR, the SQL
query,

IMPORTANT You can put your SQL query here or in the PHP file, as we’ll see.

IMPORTANT Check your field name case on your query and your report layout. If you
ask for a field called city on your query and put a CITY field on your report layout, your
database will be confused and will not return you a value. An error message will warn you
of this problem, if it happens.

the database INTERFACE you want to use (I’m using mysql here), the CONNECTION name (localhost
here), the DATABASE you want to use when opening the connection, the NO DATA MESSAGE where
you specify a message to show when no data is retrieved.
The next element is the PAGE element, notice the SIZE parameter, is where I tell the page size, we’ll
work with a short page here to make easier to see the results.
Now, we see the GROUPS element. The GROUPS element can have one or more GROUP element inside
of it, and we see a GROUP named main there. Inside of it we see a FIELDS element, with a ROW and
some COLs (with the TYPE=FIELDS) that refers to our SQL columns returned by the query.
It’s important to you get the basic idea here, let’s try to read the PAGE and GROUPS/GROUP elements
as defined there as I have a page with 10 rows, and a group of data that will list on one row the city,
name, type, item and value returned by the SQL query. For now it’s enough ...

14

3.3 The PHP code

Now let’s see the PHP code required to make your report works, on a file called sales.php:

<?php
// the line below is only needed if the include path is not set on php.ini
ini set("include path",ini get("include path").":/usr/lib/phpreports/");
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oRpt->run();

?>

Both sales.xml and sales.php are provided with the PHPReports package. I’ll suppose you unpacked the
PHPReports package on /usr/lib/phpreports/ and put sales.php under http://localhost/phpreports/ for
example. If you put it somewhere else (visible by the web server, of course) please change the URL as
you need.
So, open your browser and put this URL on the address bar:

http://localhost/phpreports/sales.php

You should see something like this:

Figure 3.1: Your first report

Ugly, uhn? But the main thing here is that it already connected to your database, made the query and
is showing you the results.

15

IMPORTANT Make sure your web server user have write permission on the PHPReports
tmp directory. If you’re curious for the reason of this, it’s a good chance to explain you how
the things works here.

NEW FEATURE WARNING Now we’ll see the new intermediate XML file with the
report data and something about the new output plugin feature.

Change your sales.php file to this (new rows are green):

<?php
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oOut = $oRpt->createOutputPlugin("default");
$oOut->setClean(false);
$oRpt->setOutputPlugin($oOut);
$oRpt->run();

?>

What happened here was that we created an object of a output plugin, a default one (first bold row),
and we asked it to do not clean our temporary file (second bold row) and we asked PHPReports to use
this new output plugin.
Its the same thing as don’t specify an output plugin, PHPReports will always create a default one if you
don’t specify it, but what we want now is see what lies on the tmp directory.
You will find a file like this:

ls tmp -rw-r---r--- nobody nobody 2,4k phprptJIKM3h.xml

Is a temporary file, so it have it’s weird name. ;-) Let’s open it to see what it have inside:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<RP TITLE="Sales Report" BGCOLOR="#FFFFFF">

<PG SZ="10" AL="LEFT" PN="1" PA="5" SP="0" BO="1">

<R><C>Mirassol</C><C>Marcio Lambary</C><C>Book</C><C>This is the book 1</C><C>40.00</C></R>

<R><C>Mirassol</C><C>Marcio Lambary</C><C>CD</C><C>This is the CD 1</C><C>10.00</C></R>

<R><C>Mirassol</C><C>Marcio Lambary</C><C>CD</C><C>This is the CD 2</C><C>20.00</C></R>

<R><C>Mirassol</C><C>Marcio Lambary</C><C>CD</C><C>This is the CD 3</C><C>30.00</C></R>

<R><C>Rio Preto</C><C>Ana Carolina</C><C>Book</C><C>This is the book 1</C><C>30.00</C></R>

<R><C>Rio Preto</C><C>Ana Carolina</C><C>Book</C><C>This is the book 2</C><C>40.00</C></R>

<R><C>Rio Preto</C><C>Ana Carolina</C><C>Book</C><C>This is the book 3</C><C>50.00</C></R>

<R><C>Rio Preto</C><C>Ana Carolina</C><C>Book</C><C>This is the book 4</C><C>60.00</C></R>

<R><C>Rio Preto</C><C>Ana Carolina</C><C>Book</C><C>This is the book 5</C><C>70.00</C></R>

<R><C>Rio Preto</C><C>Ana Carolina</C><C>CD</C><C>This is the CD 1</C><C>10.00</C></R>

</PG>

<PG SZ="10" AL="LEFT" PN="2" PA="5" SP="0" BO="1">

<R><C>Rio Preto</C><C>Ana Carolina</C><C>CD</C><C>This is the CD 2</C><C>20.00</C></R>

<R><C>Rio Preto</C><C>Eustaquio Rangel</C><C>Book</C><C>This is the book 1</C><C>40.00</C></R>

<R><C>Rio Preto</C><C>Eustaquio Rangel</C><C>Book</C><C>This is the book 2</C><C>50.00</C></R>

<R><C>Rio Preto</C><C>Eustaquio Rangel</C><C>CD</C><C>This is the CD 1</C><C>10.00</C></R>

<R><C>Rio Preto</C><C>Eustaquio Rangel</C><C>CD</C><C>This is the CD 2</C><C>20.00</C></R>

<R><C>Rio Preto</C><C>Eustaquio Rangel</C><C>CD</C><C>This is the CD 3</C><C>30.00</C></R>

<R><C>Sao Paulo</C><C>Andre Kada</C><C>Book</C><C>This is the book 1</C><C>50.00</C></R>

<R><C>Sao Paulo</C><C>Andre Kada</C><C>Book</C><C>This is the book 2</C><C>60.00</C></R>

<R><C>Sao Paulo</C><C>Andre Kada</C><C>Book</C><C>This is the book 3</C><C>70.00</C></R>

<R><C>Sao Paulo</C><C>Andre Kada</C><C>CD</C><C>This is the CD 1</C><C>10.00</C></R>

</PG>

<PG SZ="10" AL="LEFT" PN="3" PA="5" SP="0" BO="1">

<R><C>Sao Paulo</C><C>Andre Kada</C><C>CD</C><C>This is the CD 2</C><C>20.00</C></R>

<R><C>Sao Paulo</C><C>Andre Kada</C><C>CD</C><C>This is the CD 3</C><C>30.00</C></R>

<R><C>Sao Paulo</C><C>Andre Kada</C><C>CD</C><C>This is the CD 4</C><C>40.00</C></R>

<R><C>Sao Paulo</C><C>Andre Kada</C><C>CD</C><C>This is the CD 5</C><C>50.00</C></R>

</PG>

</RP>

16

What we have here is the data of your report, described using XML (again!), with short tags because a
verbose and clear XML data file could have a very big size. So I’m using these tags to store the data:

RP It’s the main layer tag, it’s the REPORT
PG It’s the PAGE layer, notice we have 3 pages there
R It’s the ROW layer
C It’s the COL layer

NEW FEATURE WARNING We didn’t have this intermediate XML file on previous
versions, so you can notice a tiny small delay to create and render your report now.

The very good points to this XML file is that you can transform it on what file format you want to.
The default one is the HTML output, but we’ll see some more later. Another good point is that we can
store the data file and transform it later also.
I’ll tell you about output plugins and the interface that allow you to create your own plugins later.
For now, we need to understand the way it works:

Figure 3.2: The creation/rendering path

The green rectangles is where you need to provide input to create your report, the yellow ones are the
things PHPReports provides to create your report.

17

3.4 Making your report looks better

So, now you understand how the things works, let’s put some more cool things on it.
Suppose I want to just show a header with the name of the city (not the name of the city on every row),
and the sum of all the items bought on that city on the end of that group, how can I do?
The question pointed the way, we need a HEADER, but also we need to GROUP the cities to have this,
and we need a FOOTER on that group to show the sum.
The next change to sales.xml (green rows shows the new code) is:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE REPORT SYSTEM "PHPReport.dtd">

<REPORT MARGINWIDTH="5" MARGINHEIGHT="5">

<TITLE>Sales Report</TITLE>

<BACKGROUND COLOR>#FFFFFF</BACKGROUND COLOR>

<SQL>select CITY,NAME,TYPE,ITEM,VALUE from sales order by CITY,NAME,TYPE,ITEM</SQL>

<INTERFACE>mysql</INTERFACE>

<CONNECTION>localhost</CONNECTION>

<DATABASE>phpreports</DATABASE>

<NO DATA MSG>No data was found, check your query</NO DATA MSG>

<PAGE BORDER="1" SIZE="10" CELLSPACING="0" CELLPADDING="5">

</PAGE>

<GROUPS>

<GROUP NAME="city" EXPRESSION="CITY">

<HEADER>

<ROW>

<COL ALIGN="RIGHT">city:</COL>

<COL TYPE="EXPRESSION">$this->getValue("CITY")</COL>

</ROW>

</HEADER>

<FIELDS>

<ROW>

<COL TYPE="FIELD">NAME</COL>

<COL TYPE="FIELD">TYPE</COL>

<COL TYPE="FIELD">ITEM</COL>

<COL TYPE="FIELD">VALUE</COL>

</ROW>

</FIELDS>

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" TYPE="EXPRESSION">"total of ".$this->getValue("CITY")

</COL>

<COL TYPE="EXPRESSION">$this->getSum("VALUE")</COL>

</ROW>

</FOOTER>

</GROUP>

</GROUPS>

</REPORT>

The result is (I’ll show you always the first page now):

Figure 3.3: The basic report

As you can see, now we have the city group, with a HEADER that show us what city are the data on
the next rows (so we don’t need to print it on every row) and a footer that show us the amount of items
bought on that city.

18

To make the grouping and breaking magic, we used the EXPRESSION=”CITY” attribute on the
GROUP element. It tells PHPReports to break the group every time the CITY field is different than
the previous value.
If you look to the file above, you can see clearly the HEADER tag, with a ROW and two COLs inside
of it. You can have how many ROWs and COLs you want there.
On the first COL, there’s an attribute ALIGN wich tells the values there to be aligned on the right side
(HTML similar). Inside the COL, we have a plain text value.
To put plain text you just need to type it inside a COL.
The next COL have an attribute TYPE=”EXPRESSION”, who tells PHPReports to evaluate the text
inside the element as a PHP expression. It means that you can put any valid PHP code (don’t forget it
must be scope valid) there, some function (for example, date(”d/m/Y”)) or variable.
On the example we’re printing the value of the CITY field, on the group scope, with the function get-
Value(”CITY”) (more about PHPReports functions later), returning the value of the $this-> reference.
The $this-> reference points to the current group.

NEW FEATURE WARNING For the users of previous versions: I removed that horrible
$header-> reference, thanks God! But don’t worry, it still works, you don’t need to change
your reports and now can use the $this-> reference.

NEW FEATURE WARNING For the users of previous versions: now you are allowed
to use COLs of TYPE=”EXPRESSION” on all elements. On previous versions you couldn’t
use TYPE=”EXPRESSION” on the FIELDS element.

The same way we have the HEADER, we have the FOOTER. The first COL on the FOOTER (al-
ways inside a ROW element) have an EXPRESSION joining a string with the value returned by
getValue(”CITY”), and the second COL returns the GROUP sum of the VALUE field using get-
Sum(”VALUE”).

19

3.5 Let there be colors

The colors of PHPReports are defined by CSS, as on HTML. If you don’t know CSS, it’s another good
idea search for some tutorials on the net. ;-)
I’ll create a file called sales.css where I’ll define the colors of HEADERs, FOOTERs, FIELDS COLs and
another class to define my bold fonts:

.HEADER {
font-family: "arial","verdana";
font-size: 10px;
color: #505050;
background: #DDDDDD;

}

.FOOTER {
font-family: "arial","verdana";
font-size: 10px;
color: #505050;
background: #CCCCCC;

}

.FIELDS {
font-family: "arial","verdana";
font-size: 10px;
color: #000000;
background: #FEFEFE;

}

.BOLD {
font-weight: bold;

}

Now we must modify or sales.xml file to use the CSS classes:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE REPORT SYSTEM "PHPReport.dtd">

<REPORT MARGINWIDTH="5" MARGINHEIGHT="5">

<TITLE>Sales Report</TITLE>

<BACKGROUND COLOR>#FFFFFF</BACKGROUND COLOR>

<SQL>select CITY,NAME,TYPE,ITEM,VALUE from sales order by CITY,NAME,TYPE,ITEM</SQL>

<INTERFACE>mysql</INTERFACE>

<CONNECTION>localhost</CONNECTION>

<DATABASE>phpreports</DATABASE>

<NO DATA MSG>No data was found, check your query</NO DATA MSG>

<CSS>http://localhost/phpreports2/sales.css</CSS>

<PAGE BORDER="1" SIZE="10" CELLSPACING="0" CELLPADDING="5">

</PAGE>

<GROUPS>

<GROUP NAME="city" EXPRESSION="CITY">

<HEADER>

<ROW>

<COL ALIGN="RIGHT" CELLCLASS="HEADER">city:</COL>

<COL TYPE="EXPRESSION" CELLCLASS="HEADER" TEXTCLASS="BOLD" COLSPAN="3">

$this->getValue("CITY")</COL>

</ROW>

</HEADER>

<FIELDS>

<ROW>

<COL TYPE="FIELD" CELLCLASS="FIELDS">NAME</COL>

<COL TYPE="FIELD" CELLCLASS="FIELDS">TYPE</COL>

<COL TYPE="FIELD" CELLCLASS="FIELDS">ITEM</COL>

<COL TYPE="FIELD" CELLCLASS="FIELDS">VALUE</COL>

</ROW>

</FIELDS>

20

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" TYPE="EXPRESSION" CELLCLASS="FOOTER" COLSPAN="3">

"total of ".$this->getValue("CITY")</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD">

$this->getSum("VALUE")</COL>

</ROW>

</FOOTER>

</GROUP>

</GROUPS>

</REPORT>

Now it looks like this:

Figure 3.4: Basic colors

Oh yeah, that’s better now! To do that, look the green code above: first, you need to tell PHPReports
where your css file is using the element CSS. So, you use CELLCLASS to the class of the cell (or COL)
and TEXTCLASS to the class of the font inside the cell.
You just need the TEXTCLASS if you want the font different than the CELLCLASS. CELLCLASS can
define the way the font inside the COL will looks like, but sometimes, as in the bold font there, we need
to specify another font inside the CELLCLASS.
I used another parameter here also, the COLSPAN parameter. The COLSPAN works like the HTML
one, it spans the column for x columns you want. In the HEADER I make the second column with a
size of 3 columns, and on the FOOTER was the first column that spans that way.
One other cool feature you can control with the CSS classes is the way even and odds rows (based on
their number on the page) have its colors. Insert this code in your sales.css file:

.ODD {
font-family: "arial","verdana";
font-size: 10px;
color: #000000;
background: #BDDFF3;

}
.BOLD {

font-weight: bold;
}

and modify sales.xml like this (I’ll show you just the FIELDS element):

<FIELDS>

<ROW>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD">NAME</COL>

21

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD">TYPE</COL>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD">ITEM</COL>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD">VALUE</COL>

</ROW>

</FIELDS>

This makes the even rows use the CSS class defined on CELLCLASSEVEN and the odd rows use the
class defined on CELLCLASSODD. Your report looks like this now:

Figure 3.5: More colors

Since the 0.3.1 version, we can define CSS files for different type of media. For example, suppose you
want the full coloured report above on the screen and a black-and-white version for printing. Now we
can do this:

<CSS MEDIA="screen">http://localhost/phpreports2/sales.css</CSS>

<CSS MEDIA="print">http://localhost/phpreports2/sales for printing.css</CSS>

When using this kind of thing, your web browser will use the MEDIA=”print” stylesheet when sending
your report to the printer. If you don’t specify a media type there, ”screen” will be the default one.
If you define the CSS classes there to black-and-white stuff, your report will looks like the one on the
grayscale figure above.

More about this here:
http://www.w3.org/TR/REC-CSS2/media.html

22

3.6 The page element

Let’s deal with the PAGE element now. You noticed (as I told you) or PAGE is very short, just 10 rows.
We’ll change this right now, remove the borders, put a HEADER and a FOOTER on the page and deal
with some XHTML code inside the COL element.
Here is the changes on sales.xml (only the PAGE element):

<PAGE BORDER="0" SIZE="20" CELLSPACING="0" CELLPADDING="5">

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" COLSPAN="4">

<XHTML>

<TABLE BORDER="0" CELLPADDING="2" CELLSPACING="0" WIDTH="100%">

<TR>

<TD CLASS="HEADER">

JOHN DOE ENTERPRISES

</TD>

<TD ROWSPAN="2" CLASS="HEADER" style="background:#A0A0A0;

color:#FFFFFF;" ALIGN="CENTER">

powered by
phpreports

</TD>

</TR>

<TR>

<TD CLASS="HEADER">

SALES REPORT

</TD>

</TR>

<TR>

<TD COLSPAN="4"><HR/></TD>

</TR>

</TABLE>

</XHTML>

</COL>

</ROW>>

</HEADER>

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" COLSPAN="3" CELLCLASS="FOOTER">page total</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT">

$this->getSum("VALUE")</COL>

</ROW>

<ROW>

<COL ALIGN="RIGHT" COLSPAN="4" TYPE="EXPRESSION" CELLCLASS="FOOTER">"page number ".$this->getPageNum()</COL>

</ROW>

</FOOTER>

</PAGE>

Too much green, looks like a salad! ;-) The HEADER and FOOTER are well known right now and we
just changed the page size from 10 to 20, the point here is the BORDER=”0”, removing the borders on
the PAGE and the XHTML element. Inside this element you can put valid XHTML code to render on
your page.
XHTML are different from HTML because all its elements must have a start and an end tags. Notice
the
 and <HR> tags there, they are coded like
 and <HR/>.
Another thing to remember on XHTML elements is that no matter how many rows you have inside of it,
how much space is required to render it, it always will count the rows on the report based on your ROW
element. So, on the example, we have a table with 3 rows, but it will count just 1 row when rendering
the report.
Our report looks like this now:

23

Figure 3.6: XHTML code inside

24

3.7 Sub groups

Things are going fine, but now I need to know how much every customer bought from me, and subtotals
by the type of the items. So, I need a customer GROUP and an item GROUP.

IMPORTANT Never, never, change the correct order of GROUP, HEADER, FOOTER,
and so, another GROUP, or your report will not work and I’ll kill you, yes, I’ll. To check
your XML report layout file, you can use RXP (http://www.cogsci.ed.ac.uk/ richard/rxp.html)
this way:

rxp -V -o 0 <yourfile.xml>

To have an idea about how it can help, I was spending the last hour checking why my FOOTERs didn’t
works and forgot to check the file. Shame on me. Stupid. But now, after checking it with rxp, everything
runs fine. The next version of sales.xml we’ll see will be the validated one.
PS: the elements inside the XHTML don’t validate because it will give a lot of work to declare all of
them inside the DTD file! So if you see some errors regarding XHTML stuff, don’t worry about it.

Let’s take a look on our brand new sales.xml:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE REPORT SYSTEM "PHPReport.dtd">

<REPORT MARGINWIDTH="5" MARGINHEIGHT="5">

<TITLE>Sales Report</TITLE>

<BACKGROUND COLOR>#FFFFFF</BACKGROUND COLOR>

<CSS>http://localhost/phpreports2/sales.css</CSS>

<SQL>select CITY,NAME,TYPE,ITEM,VALUE from sales order by CITY,NAME,TYPE,ITEM</SQL>

<CONNECTION>localhost</CONNECTION>

<INTERFACE>mysql</INTERFACE>

<DATABASE>phpreports</DATABASE>

<NO DATA MSG>No data was found, check your query</NO DATA MSG>

<PAGE BORDER="0" SIZE="30" CELLSPACING="0" CELLPADDING="3">

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" COLSPAN="3">

<XHTML>

<TABLE BORDER="0" CELLPADDING="2" CELLSPACING="0" WIDTH="100%">

<TR>

<TD CLASS="HEADER">

JOHN DOE ENTERPRISES

</TD>

<TD ROWSPAN="2" CLASS="HEADER" style="background:#A0A0A0;color:#FFFFFF;"

ALIGN="CENTER">

powered by
phpreports

</TD>

</TR>

<TR>

<TD CLASS="HEADER">

SALES REPORT

</TD>

</TR>

<TR>

<TD COLSPAN="3"><HR/></TD>

</TR>

</TABLE>

</XHTML>

</COL>

</ROW> </HEADER>

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" CELLCLASS="FOOTER" COLSPAN="2">page total</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT" NUMBERFORMATEX="2">

$this->getSum("VALUE")</COL>

</ROW>

<ROW>

<COL ALIGN="RIGHT" COLSPAN="3" TYPE="EXPRESSION" CELLCLASS="FOOTER">"page number ".

$this->getPageNum()</COL>

</ROW>

25

</FOOTER>

</PAGE>

<GROUPS>

<GROUP NAME="city" EXPRESSION="CITY">

<HEADER>

<ROW>

<COL ALIGN="RIGHT" CELLCLASS="HEADER" WIDTH="50">city:</COL>

<COL TYPE="EXPRESSION" CELLCLASS="HEADER" TEXTCLASS="BOLD" COLSPAN="1">

$this->getValue("CITY")</COL>

<COL CELLCLASS="HEADER"></COL>

</ROW>

</HEADER><FOOTER>

<ROW>

<COL COLSPAN="3" CELLCLASS="FOOTER"></COL>

</ROW>

<ROW>

<COL ALIGN="RIGHT" TYPE="EXPRESSION" CELLCLASS="FOOTER" COLSPAN="2">

"total of ".$this->getValue("CITY")</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT"

NUMBERFORMATEX="2" COLSPAN="2">$this->getSum("VALUE")</COL>

</ROW>

<ROW>

<COL COLSPAN="3" CELLCLASS="FOOTER"></COL>

</ROW>

</FOOTER>

<GROUP NAME="customer" EXPRESSION="NAME">

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" ALIGN="RIGHT" WIDTH="50">customer:</COL>

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" TYPE="EXPRESSION" COLSPAN="1">

$this->getValue("NAME")</COL>

<COL CELLCLASS="HEADER"></COL>

</ROW>

</HEADER>

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" TYPE="EXPRESSION" CELLCLASS="FOOTER" COLSPAN="2">

"total of ".$this->getValue("NAME")</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT"

NUMBERFORMATEX="2">$this->getSum("VALUE")</COL>

</ROW>

<ROW>

<COL COLSPAN="3" TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD"

ALIGN="RIGHT">($this->getSum("VALUE")>200?"*** Free shipping bonus!***":"Regular shipping charging")</COL>

</ROW>

</FOOTER>

<GROUP NAME="item" EXPRESSION="TYPE">

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" ALIGN="RIGHT" WIDTH="50">type:</COL>

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" TYPE="EXPRESSION" COLSPAN="1">

$this->getValue("TYPE")</COL>

<COL CELLCLASS="HEADER"></COL>

</ROW>

<ROW>

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" WIDTH="50">title</COL>

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" ALIGN="RIGHT" COLSPAN="2">$</COL>

</ROW>

</HEADER>

<FIELDS>

<ROW>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD" ALIGN="LEFT" COLSPAN="2">

ITEM</COL>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD" ALIGN="RIGHT">VALUE</COL>

</ROW>

</FIELDS>

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" TYPE="EXPRESSION" CELLCLASS="FOOTER" COLSPAN="2">

"total of ".$this->getValue("TYPE")."(s)"</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT"

26

NUMBERFORMATEX="2">$this->getSum("VALUE")</COL>

</ROW>

</FOOTER>

</GROUP> </GROUP>

</GROUP>

</GROUPS>

</REPORT>

Checking the green stuff, you see a parameter called NUMBERFORMATEX with a 2 value there.
It’s a way to format your values, to decimal places. The 2 means that you will put 2 decimal places
there. It will also format your values with decimal and thousand separators based on the setLocale you
choose on your PHP code.
Another change was a COL with an EXPRESSION wich calculates if the amount is greater than 200, if
so, it prints a message *** Free shipping bonus! *** to tell you that order will be shipped free of
charge, otherwise will be a Regular shipping charging order.
This change was helpful to show how PHP code can be used inside a COL.
But the important stuff here its the GROUPs. Check the way they are. Don’t forget this order:

GROUP,HEADER,FOOTER,GROUP,HEADER,FOOTER ...

We have the first group called city with the break expression on the CITY field. Inside of it we have the
customer group breaking on the NAME field. And inside of it we have the item group breaking on the
TYPE field. After playing with some COLSPAN, TEXTCLASS and CELLCLASS, we have this kind of
output (I’ll put all the pages now):

27

Cool!!! Grouping by CITY, then by CUSTOMER, then by TYPE, with sum for all the groups!
You can use getSum() to do that and some other grouping functions also, please check the function
reference below.

28

3.8 The grand total

Remember how I explain the layers on the beginning of this document? The document, page and group
layers? Ok, we already worked with page and group layers, but we have also the document one.
If you want something on the beginning or on the end of your report, that’s the element you must use.
First let’s put another CSS class on our sales.css file to identify the grand total:

.BOLDRED {
color: #FF0000;
font-weight: bold;

}

And now put this before your PAGE element on sales.xml:

<DOCUMENT>

<FOOTER>

<ROW>

<COL COLSPAN="2" CELLCLASS="FOOTER" TEXTCLASS="BOLDRED" ALIGN="RIGHT">GRAND TOTAL</COL>

<COL CELLCLASS="FOOTER" TEXTCLASS="BOLDRED" TYPE="EXPRESSION" ALIGN="RIGHT" NUMBERFORMATEX="2">

$this->getSum("VALUE")</COL>

</ROW>

</FOOTER>

</DOCUMENT>

It will make the last page looks like this:

Figure 3.7: The grand total

Now you have a complete report!

29

3.9 Playing with the report

Now let’s play a little with our report. First thing we need is remove the type group, and put an type
column there. Make your sales.xml file this way:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE REPORT SYSTEM "PHPReport.dtd">

<REPORT MARGINWIDTH="5" MARGINHEIGHT="5">

<TITLE>Sales Report</TITLE>

<BACKGROUND COLOR>#FFFFFF</BACKGROUND COLOR>

<CSS>http://localhost/phpreports2/sales.css</CSS>

<SQL>select CITY,NAME,TYPE,ITEM,VALUE from sales order by CITY,NAME,TYPE,ITEM</SQL>

<CONNECTION>localhost</CONNECTION>

<INTERFACE>mysql</INTERFACE>

<DATABASE>phpreports</DATABASE>

<NO DATA MSG>No data was found, check your query</NO DATA MSG>

<DOCUMENT>

<FOOTER>

<ROW>

<COL COLSPAN="2" CELLCLASS="FOOTER" TEXTCLASS="BOLDRED" ALIGN="RIGHT">GRAND TOTAL</COL>

<COL CELLCLASS="FOOTER" TEXTCLASS="BOLDRED" TYPE="EXPRESSION" ALIGN="RIGHT"

NUMBERFORMATEX="2">$this->getSum("VALUE")</COL>

</ROW>

</FOOTER>

</DOCUMENT>

<PAGE BORDER="0" SIZE="30" CELLSPACING="0" CELLPADDING="3">

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" COLSPAN="3">

<XHTML>

<TABLE BORDER="0" CELLPADDING="2" CELLSPACING="0" WIDTH="100%">

<TR>

<TD CLASS="HEADER">

JOHN DOE ENTERPRISES

</TD>

<TD ROWSPAN="2" CLASS="HEADER" style="background:#A0A0A0;color:#FFFFFF;"

ALIGN="CENTER">

powered by
phpreports

</TD>

</TR>

<TR>

<TD CLASS="HEADER">

SALES REPORT

</TD>

</TR>

<TR>

<TD COLSPAN="3"><HR/></TD>

</TR>

</TABLE>

</XHTML>

</COL>

</ROW> </HEADER>

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" CELLCLASS="FOOTER" COLSPAN="2">page total</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT"

NUMBERFORMATEX="2">$this->getSum("VALUE")</COL>

</ROW> <ROW>

<COL ALIGN="RIGHT" COLSPAN="3" TYPE="EXPRESSION" CELLCLASS="FOOTER">"page number ".

$this->getPageNum()</COL>

</ROW>

</FOOTER>

</PAGE>

<GROUPS>

<GROUP NAME="city" EXPRESSION="CITY">

<HEADER>

<ROW>

<COL ALIGN="RIGHT" CELLCLASS="HEADER" WIDTH="50">city:</COL>

<COL TYPE="EXPRESSION" CELLCLASS="HEADER" TEXTCLASS="BOLD" COLSPAN="2">

$this->getValue("CITY")</COL>

</ROW>

30

</HEADER><FOOTER>

<ROW>

<COL COLSPAN="3" CELLCLASS="FOOTER"></COL>

</ROW>

<ROW>

<COL ALIGN="RIGHT" TYPE="EXPRESSION" CELLCLASS="FOOTER" COLSPAN="2">"total of ".

$this->getValue("CITY")</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT"

NUMBERFORMATEX="2">$this->getSum("VALUE")</COL>

</ROW>

<ROW>

<COL COLSPAN="3" CELLCLASS="FOOTER"></COL>

</ROW>

</FOOTER>

<GROUP NAME="customer" EXPRESSION="NAME">

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" ALIGN="RIGHT" WIDTH="50">customer:</COL>

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" TYPE="EXPRESSION" COLSPAN="2">

$this->getValue("NAME")</COL>

</ROW>

<ROW>

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" ALIGN="LEFT">type</COL>

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" ALIGN="LEFT">title</COL>

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" ALIGN="RIGHT">$</COL>

</ROW>

</HEADER>

<FIELDS>

<ROW>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD" ALIGN="LEFT">TYPE</COL>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD" ALIGN="LEFT">ITEM</COL>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD" ALIGN="RIGHT">VALUE</COL>

</ROW>

</FIELDS>

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" TYPE="EXPRESSION" CELLCLASS="FOOTER" COLSPAN="2">

"total of ".$this->getValue("NAME")</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT"

NUMBERFORMATEX="2">$this->getSum("VALUE")</COL>

</ROW>

<ROW>

<COL COLSPAN="3" TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD"

ALIGN="RIGHT">($this->getSum("VALUE")>200?"*** Free shipping bonus!***":"Regular shipping charging")</COL>

</ROW>

</FOOTER>

</GROUP> </GROUP>

</GROUPS>

</REPORT>

Now the report looks like this:

31

See that Book, Book, Book, CD, CD, CD? There is an option on the COL element that refuses to print
the COL value if it’s the same that the last one printed. It’s the SUPPRESS option, and it’s a boolean
one. Change the COL (inside the FIELDS) who contains the field TYPE to use SUPPRESS=TRUE.

<FIELDS>

<ROW>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD" ALIGN="LEFT" SUPPRESS="TRUE">TYPE</COL>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD" ALIGN="LEFT">ITEM</COL>

<COL TYPE="FIELD" CELLCLASSEVEN="EVEN" CELLCLASSODD="ODD" ALIGN="RIGHT">VALUE</COL>

</ROW>

</FIELDS>

This is what happens:

32

IMPORTANT TIP Sometimes the width of the pages can be variable. It’s because the
field width of one page are larger than the others on the other pages. To fix it, it’s a good
idea put some fixed size on your COL elements using the WIDTH parameter, so the fields
will be of the same width for all yor report.

Now, looking at the second page, you can see that the first row was printed This is the Book 2, but if I
didn’t named the item this way you’ll need to look on the last row of the first page to check the type of
the first item of the second page, and it is a book. I mean, it don’t mention it’s type because it is using
the SUPPRESS parameter.
To fix this and reprint the suppressed values on every page break, put a

RESET SUPPRESS ON PAGEBREAK=TRUE

on your GROUP customer:

33

Now the values are still suppressed, but you can see that the first one on the page is not.
To make more clear on the second page of what we’re dealing with, maybe we can reprint the GROUP
HEADERs on every page break. To make this, use:

REPRINT HEADER ON PAGEBREAK=”TRUE”

on the GROUPs elements you want. I put it on both GROUPs (city and customer) and got this:

If you want a page break on the first GROUP there, put the attribute:

PAGEBREAK=TRUE

on that GROUP. Let me explain how will be a little complicated put this parameter on the inner
GROUPs.
Suppose or sample, if we put the page break on the customer GROUP, every time it breaks a new PAGE
will be opened. When this happens, to close the current PAGE, it will print the customer FOOTER,
and so what? Do we must print the parent GROUP footer or not?
On our example the answer is yes, but if we have more than a customer there? If we print the city
FOOTER, will be invalid, because all the customers of that city are not printed yet.
And will be weird just a FOOTER printed on some other page. Example:

34

35

3.10 Links

Suppose now you want to put a link (to another URL, for example, it HTML based reports) in some
COL you have on your report.
We can use the LINK element, and the LINK can have three types: STATIC, DYNAMIC and EX-
PRESSION.
Let’s use the first of them, the STATIC type. Static links are immutable links you can put on your
column, so it will never change. Suppose you know a website located at http://www.whatisacity.com
(didn’t checked it it exists, please, I’m using just as an example) and there they explain to you the
concept of what is a city (pretty useless thing to make a website and register a domain, but forget about
this) and you want that everytime the word city there on your CITY group header appears it have a
link to that weird website. So you can change that COL to this:

<COL ALIGN="RIGHT" CELLCLASS="HEADER" WIDTH="50">

<LINK TYPE="STATIC" TARGET=" blank" TITLE="explain of what is a city">http://www.whatisacity.com</LINK>city:

</COL> Here is a screenshot of what happens:

Figure 3.8: Static link

As you can see, there’s a link on the city word there, and if you click on it you’ll go to a new window,
specified by the TARGET parameter, as on HTML stuff. It also have a TITLE that is like a tooltip that
appears when you put the mouse over the link.
The second type, DYNAMIC, gave us some help on previous versions (older than 0.2). You can put
there inside the LINK element the name of a report column to use as a link. It was useful when you build
a URL inside the SQL query and show there, but it’s better use the third type, the EXPRESSION
one.
On the EXPRESSION type, you can put any expression you want, as on the COL elements. Suppose
you want to check a URL called getcustomerinfo.php on your localhost using the name of your customer.
Change the COL element there on the CUSTOMER GROUP HEADER to:

<COL CELLCLASS="HEADER" TEXTCLASS="BOLD" TYPE="EXPRESSION" COLSPAN="2">

<LINK TYPE="EXPRESSION" TARGET=" blank" TITLE="click here to check info about the customer">

"http://localhost/getcustomerinfo.php?name=".$this->getValue("NAME")</LINK>$this->getValue("NAME")

</COL>

Now you have:

36

Figure 3.9: Dynamic link

with a link there on the customer name, pointing to http://localhost/getcustomerinfo.php?name=<the
customer’s name here>. On this case, the link is http://localhost/getcustomerinfo.php?name=Marcio%20Lambary.

37

3.11 Images

Images can be inserted in your report on two ways: you can specify any kind of parameters you can use
in XHTML inside a XHTML element, or with the element IMG.
Inserting inside the XHTML element is good when you will just render your report as HTML code in
your browser, but let’s suppose we have an output plugin that really needs to knows that what we have
there is a graphic file that needs to be inserted in some way. On this case is better use the IMG element.
I changed the PAGE HEADER to this:

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" COLSPAN="2">

<XHTML>

<TABLE BORDER="0" CELLPADDING="2" CELLSPACING="0" WIDTH="100%">

<TR>

<TD CLASS="HEADER">

JOHN DOE ENTERPRISES

</TD>

<TD ROWSPAN="2" CLASS="HEADER" style="background:#A0A0A0;color:#FFFFFF;" ALIGN="CENTER"> powered by
phpreports

</TD>

</TR>

<TR>

<TD CLASS="HEADER"> SALES REPORT

</TD>

</TR>

<TR>

<TD COLSPAN="3"><HR/></TD>

</TR>

</TABLE>

</XHTML>

</COL>

<COL CELLCLASS="HEADER">http://localhost/img/penguin.png</COL>

</ROW>

</HEADER>

And got this:

Figure 3.10: IMG element

What a cute penguin. :-)

38

3.12 Bookmarks

Bookmarks are used as guides to key points on your report. For example, if you want a access quickly the
cities on the report above, you could put some bookmarks on the COL element where the city belongs
and describe it with the city name.
Bookmarks, as the LINK element, have 3 types: STATIC, DYNAMIC and EXPRESSION, and
works exactly the same way as in LINK. For our example, let’s use the EXPRESSION one. Change the
COL element where the city name is to:

<COL TYPE="EXPRESSION" CELLCLASS="HEADER" TEXTCLASS="BOLD" COLSPAN="2">

<BOOKMARK TYPE="EXPRESSION">$this->getValue("CITY")</BOOKMARK>$this->getValue("CITY")

</COL>

Now you ask me: but where this bookmarks will fit in the report? If I put it all on the report, maybe
you have a lot of bookmarks and will be horrible to print all that stuff. So I make they fit on another
frame in the browser window.

IMPORTANT TIP To make this works, I mean, have the bookmarks and report rendered,
I need to make a copy of the XML report result file and render it with different XSLT scripts,
so you can notice two files on the tmp dir while it process that.

If you try to run the report the same way we were running, with the BOOKMARKs there, you’ll see the
same report we were seeing till now. To use stuff like BOOKMARKs, we need to tell PHPReports we
need (remember this)

another way to render our XML result report file

And this is done using output plugins.

39

40

Chapter 4

Output plugins

4.1 What is an output plugin?

Output plugins are ways to render/convert our report file into another stuff than HTML (or another
ways to render HTML). On the BOOKMARKs case is specify a way to render the file using frames.
Remember the graphic on the section The PHP Code:

Figure 4.1: The creation/rendering path

We’re dealing with the first yellow box here: our report is already processed with all the data (now its
only text) inside of it, and we’re going to send it to a output plugin and make it looks the way we want.
If you didn’t noticed yet, even the simplest report works this way, with the default output plugin that
renders it on a simple HTML page.
So, to tell PHPReports that now we need to see our report with a frameset showing us our bookmarks,
we change our sales.php to this:

<?php
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oOut = $oRpt->createOutputPlugin("bookmarks");
$oRpt->setOutputPlugin($oOut);
$oRpt->run();

?>

Look the green lines: on the first one I create an output plugin called bookmarks and on the second one
I told the report and it must use it. The result is something like this:

41

Figure 4.2: Bookmarks

Uhn. That screenshot is a little ugly. Before you ask “hey, is there a way to make the BOOKMARKs
a little more beautiful than that?” let’s spend just a little more time with the bookmark output plugin
before going deeper again with the rest of the explanation about it.
Just change sales.xml to:

<COL TYPE="EXPRESSION" CELLCLASS="HEADER" TEXTCLASS="BOLD" COLSPAN="2">

<BOOKMARK TYPE="EXPRESSION" CELLCLASS="CITY" TEXTCLASS="BOOKMARK TEXT">$this->getValue("CITY")</BOOKMARK>

$this->getValue("CITY")

</COL>

and sales.php to:

<?php
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oOut = $oRpt->createOutputPlugin("bookmarks");
$oOut->setCSS("http://localhost/phpreports/css/bookmarks.css");
$oRpt->setOutputPlugin($oOut);
$oRpt->run();

?>

Put the correct file path there. It’s provided with the PHPReports package. That classes, CITY and
BOOKMARK TEXT, are defined inside the bookmarks.css file. Now our output looks like this:

42

Figure 4.3: Bookmarks with CSS

Very better. You can control the way your BOOKMARKs will looks like on your css file.
Now, back to the output plugins. We have four plugins that comes with the PHPReports package (to
be honest there is one more, toolbar, but I kind of play with it, not a serious plugin :-)):

1. The default plugin it’s the default plugin that renders you report on a single HTML page.

2. The bookmarks plugin we were talking about it now, render your report on right side of the
frame and the bookmarks on the left side.

3. The page plugin renders your report page by page, with an index below it, just as Google searchs.

4. The text plugin renders your report like a TXT file.

4.2 Default output plugin

There’s nothing to say about it: if you don’t specify an output plugin, it will be used. If you want to
force it, you can use:

<?php
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oOut = $oRpt->createOutputPlugin("default");
$oRpt->setOutputPlugin($oOut);
$oRpt->run();

?>

4.3 Bookmarks output plugin

IMPORTANT NOTE
This plugin requires a /tmp directory with write permission under your DOCUMENT ROOT

We saw a good explanation about this one before.

43

All that you need to know is that it have the setCSS(<string>) and getCSS() methods, used to point
to a CSS file where you can define the classes you use with your BOOKMARKs elements.

4.4 Page output plugin

IMPORTANT NOTE
This plugin requires a /tmp directory with write permission under your DOCUMENT ROOT

Now a new one. Using this plugin you can have your report viewed page-by-page.
We have some methods here:

setIncr(number) The number of pages where the index will be calculated.
It’s the number of pages you’ll see on the index. The default is 10.

setNext(string) The label of the next page, from the current one.
setPrev(string) The label of the previous page, from the current one.
setFirst(string) The label of the first page.
setLast(string) The labels of the last page.

You can control how the page index will be displayed using CSS with these classes:

PHPREPORTS PAGE CELL Every number/link is inside a table cell.
This element controls how it will look like.

PHPREPORTS PAGE LINK How the links will be rendered.
PHPREPORTS PAGE LINK BOLD How the bold link will be rendered.

The bold link refers to the number of the current page.
Changing sales.php to:

<?php
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oOut = $oRpt->createOutputPlugin("page");
$oOut->setIncr(2);
$oOut->setFirst("first");
$oOut->setLast("last");
$oOut->setNext("next");
$oOut->setPrev("prev");
$oRpt->setOutputPlugin($oOut);
$oRpt->run();

?>

and inserting this on sales.css:

.PHPREPORTS_PAGE_CELL {
font-family:"verdana","arial";

font-size:12px;
color:#000000;

}

.PHPREPORTS_PAGE_LINK {
font-family:"verdana","arial";
font-size:12px;
color:#000000;

}

.PHPREPORTS_PAGE_LINK_BOLD {

44

font-size:16px;
font-weight:bold;

}

gives me this:

Figure 4.4: Page output plugin

I hope you got the point about it. :-)

IMPORTANT TIP Since we need to re-render the report on every page, the temporary
file is not erased. You need to erase it manually.

45

4.5 TXT output plugin

The TXT output plugin just transforms your report in plain text. You can see it on the browser or save
it to a file.
Just change this on sales.php:
$oOut = $oRpt->createOutputPlugin("txt");
and you got this:

JOHN DOE ENTERPRISES
powered by
PHPReports
SALES REPORT

city: Mirassol
customer: Marcio Lambary
type title $
Book This is the book 1 40.00
CD This is the CD 1 10.00
This is the CD 2 20.00
This is the CD 3 30.00
total of Marcio Lambary 100.00
Regular shipping charging

total of Mirassol 100.00

page total 100.00
page number 1

Ugly, but is what is supposed to do.

IMPORTANT TIP Since the browser change to the text file when converted, the temporary
file is not erased. You need to erase it manually.

4.6 Creating your own output plugins

A cool thing is that if you want to render the report on a format that is not provided with the default
package, you can, if you know some PHP and XML/XSLT programming. Let’s first check the directory
structure related to this kind of thing:

+--- output
|
+------ bookmarks
+------ common
+------ default
+------ page
+------ toolbar
+------ txt

We will pick a simple one, the TXT output plugin. Check inside the txt dir and you’ll find:

PHPReportOutput.php txt.xsl

Check the PHPReportOutput.php file, take a look on the PHPReportOutputObject class, it haves the
following methods and properties:

• set/getInput(file) The XML used to render the report on this class format.

46

• set/getOutput(file) Where to write the report

• setClean/isCleaning Delete or not the input file

• setJump/isJumping Jump or not to the generated file (for example, the TXT files)

• loadFrom(file) Location of the saved report to load (see section 23)

• run() Run the output plugin

These basic operations allows you to create and run your output plugins, and to make a standard, always
extend your plugins from this class, and use PHPReportOutput.php as your plugin main class.
Now that we know all this stuff we can check the file above again.It haves just one method, the run
method, where it gets the file and the url paths, based on the file path refers to the txt XLS file, based
on the file path get the XML report file name, check if there is not an output file name, if not, based on
the file path creates a new one, or use the one we told it to use, creates the XSLT processor, runs the
XSLT transformations on the XML report file, free its resources, send the the generated txt file to the
browser and if we told it to clean the XML report file, delete it.
This part is pretty simple, all you have to do is not forgot these rules:

• put it under the output directory

• extends your plugin from PHPReportOutputObject and

• name your plugin main file as PHPReportOutput.php

Everytime you use a plugin, it will search on a subdirectory under the output directory. Want to give a
look on the whole process? Ok, here it goes, open the sales.php file:

<?phpinclude once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oOut = $oRpt->createOutputPlugin("default");
$oRpt->setOutputPlugin($oOut);
$oRpt->run();

?>

We inform the user, the password and the XML file, create the output plugin, put it on the report
maker object and run the report make. So the report maker creates all the PHP code, run it asking the
database about the data, create the XML report file with all the data described inside, and checks about
the output plugin (if there is not one, it will create a default one), inform the output about the XML
report data file name and run it.
To create the output plugin the report make calls it method createOutputPlugin, where it includes
the desired PHPReportOutput.php file located on the PHPREPORTFILE/output/¡plugin name¿/ di-
rectory. So, this is the reason of a good plugin name and why all the plugin main classes needs the
PHPReportOutput.php name. ;-)
Now we’ll see the txt.xsl file, used to transform out XML report data file into a plain text file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="text" encoding="ISO-8859-1" indent="no"/>

<xsl:strip-space elements="*"/>

<xsl:template match="/RP">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="PG">

<xsl:apply-templates/>

<xsl:text>
</xsl:text>

<xsl:text>----------------------
</xsl:text>

<xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="R">

<xsl:apply-templates/>

<xsl:text>
</xsl:text>

47

</xsl:template>

<xsl:template match="C">

<xsl:apply-templates/>

<xsl:text> </xsl:text>

</xsl:template>

<xsl:template match="LI">

<xsl:value-of select="text()"/>

</xsl:template>

<xsl:template match="XHTML">

<xsl:call-template name="HTML ELEM"/>

</xsl:template>

<xsl:template match="BK">

</xsl:template>

<xsl:template match="node()[ancestor::XHTML]">

<xsl:call-template name="HTML ELEM"/>

</xsl:template>

<xsl:template match="text()[ancestor::XHTML]">

<xsl:if test="string-length(.)>0 and not(node())">

<xsl:value-of select="normalize-space(.)"/>

<xsl:text>
</xsl:text>

</xsl:if>

</xsl:template>

<xsl:template name="HTML ELEM">

<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

If you know about XML/XSLT transformations it is pretty simple, if you don’t, it is simple also, but
check http://www.w3schools.com about all that stuff. To make it clear let’s say that we have some
templates there (the green words) and everytime XSLT find some of them, it applys the code there. For
example, the first one is RP, who stands for REPORT, the second one is PG who stands for PAGE, look
that every time it find a page it applies all the other templates found inside there and insert a line break,
a row with some ’-’ chars and another page break. And so on.
But hey, where the hell did I name it as RP, PG, etc? I know you can be thinking about this as some
stupid thing, but let me say to you that XML is a good way to describe your data, but it can be very
verbose, so, in the name of the file sizes I choose to use this kind of thing. But don’t worry, is not so
bad. On the next section we will see more about the shorter tags and what they means.

4.7 The XML report data file

Inside this file (hey, is your report data there, give a look!) you can find some elements, and I’ll try to
tell you about them here.

• RP is the REPORT element, where all the other report elements are. It haves the TITLE, CSS,
BGCOLOR and BACKGROUND attributes (hey, those name are not shorter names, but, yes,
they just appears maybe just once on the whole report)

• PG is the PAGE element, with AL (ALIGN), BO (BORDER), WI (WIDTH), HE (HEIGHT),
PA (CELLPADDING) and SP (CELLSPACING) attributes

• R is the ROW element

• C is the COLUMN element, with WI (WIDTH), HE (HEIGHT), AL (ALIGN), VA (VALIGN),
CS (COLSPAN), RS (ROWSPAN), CC (CELLCLASS), TC (TEXTCLASS), LI (LINK) and
BK (BOOKMARK) attributes.

• XHTML all the XHTML code (take care here: you need to deal with XHTML code, and not
XML here, but anyway, it’s almost the same)

Just to give another example: if you open the <phpreports home>/output/common/PHPReport*.xsl
files, you’ll see that every time we find a PG, we put a TABLE tag on the output, if we find a R we put
a TR tag, if we find a C, we put a TD tag, and so on ...

48

Chapter 5

Some other things you need to know

5.1 Setting your parameters from the PHP code

I told you how to set your user name, password, database interface, database connection, database to be
used and so on, on the XML layout file. Now let me explain to you why this could not be a good idea
and how to fix that.

As the XML needs to be readable by the web server user, to read and process them, all the info available
inside the files can be reached using a direct URL to the file, without using it to process your report.
Suppose you have sales.xml under /var/www/hdtocs/phpreports. Using

http://localhost/sales.xml

Voil! The browser will show you all the info inside the file. And, wow, if you put some user name
and password there, your database will not be on a safe place now. So, it’s a very bad idea put user
names and passwords there (I already told you about that but I will repeat this how many times it will
be necessary to put it in your mind).

Even the database name, interface and info about your connection is not really a good idea put there.
People can find your local paths and knows what kind of database you have, and a name to try to connect
there.
To avoid some headaches, use the methods like setUser(), setPassword(), setDatabase(), setCon-
nection(), setDatabaseInterface() (check the API below). Try to use also setSQL() to avoid people
knows about your queries, because they can know about your table names and so on.

And setSQL() is the answer when you need to pass parameters to your query. Suppose you have a
query like

select * from customers where code=?

where ? is a variable parameter. You can modify the query before you send it to processing, on your
PHP code, so suppose you’re running the query based on a $ POST[”customer num”] variable, you can
send it like this:

$oRpt->setSQL(”select * from customers where code=”.$ POST[”customer num”]);

49

5.2 Organizing your directory structure

It’s a very good idea to keep your PHPReports scripts not accessible to an URL typed on your browser
address bar. I didn’t find any exploit to PHPReports, but you know, if there’s something that can
improve the safety of the whole thing, let’s do it.

So, unpack your PHPReports for example under /usr/lib, /usr/include, /usr/share, it’s your choice.
If you’re using Windows, unpack it under some directory out of the webserver scope (I can’t give any
tips about names on Windows :-). You need to make sure the directory is readable by the webserver
user (“nobody” on the most Apache installations).

This is very good to you deal with your files and make easier an upgrade to another PHPReports
version.
And put your XML data layout files out of webserver reach also! So people will not see your data layout
on the web (no problem with that, if you don’t put sensitive data like user and passwords there).

Suppose you put your PHPReports classes under /usr/lib/phpreports, your XML data layout files under
/var/xml and your CSS files under http://www.yoursite.com/css/:

<?php
// the line below is only needed if the include path is not set on php.ini
ini set("include path",ini get("include path").":/usr/lib/phpreports/");
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("/var/xml/sales.xml"); // changed to the XML dir
$oRpt->run();

?>

On your sales.xml file:

...
<!-- changed to the CSS dir //-->
<CSS MEDIA="screen">http://www.yoursite.com/css/sales.css</CSS>
...

So, on the PHP code I told the script to look for phpreports directory (with ini set() or defined in php.ini)
and include PHPReportMaker.php. This should be the only class you need to include.
So I asked to use the sales.xml file on the /var/xml directory, which have a reference inside to sales.css
on the http://www.yoursite.com/css directory. This can keep simple your structure and the way you
manage your files.

Keeping this that way will not allow people know that you have PHPReports installed, will not al-
low them to reach the PHPReports classes from the browser address bar, will not show them your XML
data layout files.

Just don’t forget to erase temporary files created with some output plugins like bookmarks and page.
The default ones are stored on your OS temp dir, not accessible by the webserver on the most part of
the cases, so it will not be a problem.

50

5.3 Breaking groups with more than one expression

I told you how to break your groups using EXPRESSION=”your field herë, but what if you want a
combination of values to act like a group break expression?
Suppose you want the group breaking everytime a change happens on CITY and ZIP CODE. You can
use this way:

<GROUP NAME="CITY_ZIP" EXPRESSION="CITY,ZIP_CODE">

You need to use , between your field names there.
To make this works PHP concatenates the two results and use as a unique string to check if there was a
change on the break string.

5.4 Save your report

To save your report to view it later, you need to use the saveTo(<path>) function, before running
your report.
Remember that the XML result file can be deleted when you run your report, so we need to save it
before that.

IMPORTANT TIP To save you report you need to use PHP with zlib compiled (–with-
zlib=<dir>), to use gzip compression.

IMPORTANT TIP All the paths are relative to the PHPReports path, for example,
tmp/test.tgz stands for PHPREPORTFILE/tmp/test.tgz.

It’s very simple, you can use this way:

<?php
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oRpt->saveTo("tmp/test.tgz");
$oRpt->run();

?>

This will save your report on a file called test.tgz, on the tmp directory.
On our example the XML file is about 8819 bytes,, using the zlib compression it’s just 1197 bytes on the
tgz file. It’s a nice way to store that (86.6% compression).

5.5 Restore your report

Restoring your report is easy: all you need to do is create the desired output plugin where you want it
will be processed and run it using the loadFrom(<path>) function.

IMPORTANT TIP All the paths are relative to the PHPReports path, for example,
tmp/test.tgz stands for PHPREPORTFILE/tmp/test.tgz.

For example:

<?php
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oOut = $oRpt->createOutputPlugin("default");
$oOut->loadFrom("tmp/test.tgz");

?>

If you want a different plugin to render your saved report, just change default to the plugin you want.

51

5.6 Some few words about file integrity

When you save your report, it will be saved with the md5 checksum of the file. When restoring your
report, this checksum will be validated again, and if there is some difference between the data it haves
when was saved and the data you’re trying to restore, PHPReports will return with an error and will
not show your report.

5.7 Exchanging formats

Suppose you have your HTML rendered output but now want to be able to convert it to another supported
output format, and wants to make it with this in mind:

1. You’ll process your report just once

2. The user will be allowed to click on some links to easily change the output formats

Let’s work with some frames here. Create a frameset page file called outindex.html using this:

<FRAMESET COLS="100,*">
<FRAME SRC="outmenu.php" NAME="MENU">
<FRAME SRC="" NAME="MAIN">

</FRAMESET>

Now create the outmenu.php file like this:

<?php
include once "PHPReportMaker.php";
$sXML = tempnam(getPHPReportsTmpPath(),"phprpt");
$sBase= basename($sXML);
$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oRpt->setXMLOutputFile($sXML);
$oOut = $oRpt->createOutputPlugin("default");
$oOut->setClean(false);
$oOut->setOutput("/dev/null");
$oRpt->setOutputPlugin($oOut);
$oRpt->run();

?>
<html>

<head>
<title>PHPReports exchanging formats</title>
<link rel="stylesheet" type="text/css" href="css/phpreports.css">

</head>
<body>

<p class="REGULAR" style="margin:15px;">
<?php

print "converting $sBase to

";
print "

default html
";
print "

page to page
";
print "

text file
";
?>
</p>

</body>
</html>

52

Need your attention here: see the green lines? Is where I create the temporary XML filename where the
report data will be put and where I tell to the report and to the output plugin file to don’t erase my
XML file. So I’ll be allowed to use it on another conversion.
Using those files we’ll see two frames, one with the menu with three file formats and another one rendering
the format you click on the menu. So, is a good idea put something to erase your temporary XML file
after the user makes all the conversion he wants.
How to do that is your choice, put another link there to erase the file, schedule some cron jobs blah blah
blah. :-) The result will be like this:

Figure 5.1: Default output

Figure 5.2: Page output

5.8 Trying to make things faster

If you have huge reports and some RAM available, you can try this.
I need to tell you how things works here. When you send a ROW with some data to the report it’s
stored first on a memory variable (fewer disk access means more speed), till a specified limit where you
say “hey, no enough memory to handle more”, and at this point is created the intermediate XML file
and all the memory data is written and flushed there. From this point, all the ROW data that the report
receives is automatically written to the file.
On the REPORT element you have the MAX ROW BUFFER attribute, where you can control how
many ROWS will be stored on memory before the file write begins.
If you have just a few megabytes, decrease the size (the default value is 2500 rows), if you have a lot of

53

Figure 5.3: TXT output

RAM increase it.
Important note: This kind of thing will only speed up things while creating your report, because on
the end there is no escape: all the data on memory is written to the disk. It’s up to you make your
benchmarks and see what’s the best behaviour.

5.9 Reuse your XML data

A guy asked me this some days ago and I was checking how to do that. He asked me:

“I have to make a large number of reports that are identical in struture, number of columns and groups
are the same, but the name of the columns and groups change from one form to the next.
Is it possible to pass php variables to the xml file so that the value of the variable is used by phpreports
instead of the hardcoded field name?”

I’ll answer here as I answered him, “XML should have a way to do that”.
So I start to search and found that we can use XML entities to make it works that way.
On my example I’ll deal with HEADERs and FOOTERs. Suppose you always use the same HEADER
and the same FOOTER on your reports. So, I have a header.xml with this:

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" COLSPAN="3">

<XHTML>

<TABLE BORDER="0" CELLPADDING="2" CELLSPACING="0" WIDTH="100%">

<TR>

<TD CLASS="HEADER">

JOHN DOE ENTERPRISES

</TD>

<TD ROWSPAN="2" CLASS="HEADER" style="background:#A0A0A0;color:#FFFFFF;" ALIGN="CENTER">

powered by
phpreports

</TD>

</TR>

<TR>

<TD CLASS="HEADER">

SALES REPORT

</TD>

</TR>

<TR>

<TD COLSPAN="3"><HR/></TD>

</TR>

</TABLE>

</XHTML>

</COL>

</ROW>

</HEADER>

and a footer.xml with this:

54

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" CELLCLASS="FOOTER" COLSPAN="2">page total</COL>

<COL TYPE="EXPRESSION" CELLCLASS="FOOTER" TEXTCLASS="BOLD" ALIGN="RIGHT" NUMBERFORMATEX="2">

$this->getSum("VALUE")</COL>

</ROW>

<ROW>

<COL ALIGN="RIGHT" COLSPAN="3" TYPE="EXPRESSION" CELLCLASS="FOOTER">"page number ".$this->getPageNum()</COL>

</ROW>

</FOOTER>

Now inside my XML report layout file I need to change some stuff to tell it to use these files.
I know that there is Xinclude and we could use it, but the entities right now works better, in my
opinion. If you have some example you made using XInclude, please send me.
But back to the XML file. Suppose it’s our old friend sales.xml, I must tell it where to find and include
the files above. Check this out:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE REPORT SYSTEM "PHPReport.dtd" [
<!ENTITY header SYSTEM "header.xml">
<!ENTITY footer SYSTEM "footer.xml">

]>

I told there are some files called header.xml and footer.xml and we’ll call them as header and footer
entities now. To use them inside the XML file is very easy:

<PAGE BORDER="0" SIZE="30" CELLSPACING="0" CELLPADDING="3">
&header;
&footer;

</PAGE>

Now all the elements from header.xml and footer.xml are inside the PAGE element and you can reuse
it on the way you want. :-)

5.10 Previewing your report

If you want to take a look on how your report will looks like (this only works for HTML output) you
can use:

<?php
include once "PHPReportMaker.php";
$oRpt = new PHPReportMaker();
$oRpt->preview("sales.xml");

?>

For sales.xml it will looks like:

5.11 Passing string parameters to your report

If you want to pass parameters from your PHP code to your reports, you’ll need to use the setParam-
eters() function.
Suppose you have init date and end date, and need to put it on your HEADER element. You will
need something like this:

PHP code

55

Figure 5.4: HTML report preview

$aParms = Array();
$aParms["init_date"];
$aParms["end_date"];

// code to create the PHPReportMaker object
$oRpt->setParameters($aParms);
// code to run PHPReportMaker object

XML code

<COL TYPE="EXPRESSION">$this->getParameter("init_date")</COL>
<COL TYPE="EXPRESSION">$this->getParameter("end_date")</COL>

Since the 0.3.1 version, you can send 10 parameters to your report.

5.12 Passing objects parameters to your report

To pass parameters that are PHP objects (classes), you need to use these functions:

setEnvObj(id,object) Stores the object with the id for reference later.
getEnvObj(id) Get the object reference by id.

You can use like this:

PHP code

// define your object here
// let’s suppose your MyClass class have a method
// called printHello(), that prints ‘‘Hello, World!’’, ok?
$oMyClass = new MyClass();

// code to create the PHPReportMaker object
$oRpt->setEnvObj("myclass",$oMyClass);
// code to run PHPReportMaker object

XML code

<COL TYPE="EXPRESSION">$this->getEnvObj("myclass")->printHello()</COL>

Note that the code above will only works on PHP5. PHP4 can not reference a method on an object
returned by a function. Check more about ”Dereferencing objects returned from functions” on:

56

http://www.php.net/zend-engine-2.php

The above functions will put your classes/objects inside the PHPReportMaker, and it will make them
available to the COL elements there.

5.13 Inserting XHTML or PHP code into your COL

You can insert XHTML or PHP code into your XML report layout file, using an external PHP function
to do that. The function needs to be available on your report scope, for the file where you create your
PHPReportMaker object.
Let’s take a look on this simple XML file:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<REPORT MARGINWIDTH="5" MARGINHEIGHT="5">

<TITLE>Sales Report</TITLE>

<BACKGROUND COLOR>#FFFFFF</BACKGROUND COLOR>

<CSS>sales.css</CSS>

<SQL>select distinct NAME from sales order by NAME</SQL>

<CONNECTION>localhost</CONNECTION>

<INTERFACE>oracle</INTERFACE>

<NO DATA MSG>No data was found, check your query</NO DATA MSG>

<PAGE BORDER="0" SIZE="30" CELLSPACING="0" CELLPADDING="3">

<HEADER>

<ROW>

<COL CELLCLASS="HEADER" COLSPAN="3">

<XHTML>

<TABLE BORDER="0" CELLPADDING="2" CELLSPACING="0" WIDTH="100%">

<TR>

<TD CLASS="HEADER">

JOHN DOE ENTERPRISES

</TD>

<TD ROWSPAN="2" CLASS="HEADER" style="background:#A0A0A0;color:#FFFFFF;" ALIGN="CENTER">

powered by
phpreports

</TD>

</TR>

<TR>

<TD CLASS="HEADER">

SALES REPORT

</TD>

</TR>

<TR>

<TD COLSPAN="3"><HR/></TD>

</TR>

</TABLE>

</XHTML>

</COL>

</ROW> </HEADER>

<FOOTER>

<ROW>

<COL ALIGN="RIGHT" COLSPAN="3" TYPE="EXPRESSION" CELLCLASS="FOOTER">"page number ".$this->getPageNum()</COL>

</ROW>

<ROW>

<COL ALIGN="RIGHT" COLSPAN="3" TYPE="EXPRESSION" CELLCLASS="FOOTER">insert date()</COL>

</ROW>

</FOOTER>

</PAGE>

<GROUPS>

<GROUP NAME="customer">

<FIELDS>

<ROW>

<COL CELLCLASS="ODD" ALIGN="LEFT" TYPE="EXPRESSION">$this->getValue("NAME")</COL>

<COL CELLCLASS="ODD" ALIGN="LEFT" TYPE="RAW EXPRESSION">show products($this->getValue("NAME"))</COL>

</ROW>

</FIELDS>

</GROUP></GROUPS>

</REPORT>

57

Just let me say that I’m using the Oracle interface to test it, and let’s see the PHP file that calls the
XML:

<?php
require_once("PHPReportMaker.php");

function show_products($sCustomer) {
// deal with your database here
$oCon = @ociLogon("taq","******","localhost") or die("could not connect");
$oStmt= @ociParse($oCon,"select TYPE,ITEM from sales where NAME=’$sCustomer’ order by TYPE,ITEM") or die("could not parse");
@ociExecute($oStmt) or die("could not execute");
$sReturn = "<XHTML><SELECT>";
while(@ociFetch($oStmt))

$sReturn .= "<OPTION>".ociResult($oStmt,"TYPE")."-".ociResult($oStmt,"ITEM")."</OPTION>";
$sReturn .= "</SELECT></XHTML>";
@ociFreeStatement($oStmt);
return $sReturn;

}

function insert_date(){
return "today is ".date(’d/m/Y’);

}

$oRpt = new PHPReportMaker();
$oRpt->setUser("taq");
$oRpt->setPassword("******");
$oRpt->setXML("sales.xml");
$oOut = $oRpt->createOutputPlugin("default");
$oRpt->setOutputPlugin($oOut);
$oRpt->run();
?>

As you can see, inside the FIELDS element there is a COL with the TYPE=”EXPRESSION”, calling
the show products function. The show products function get as parameter the name of the customer,
from the SQL query, and creates a SELECT HTML element inside (mandatory!) a XHTML element,
and fills the SELECT with all the products bought, executing another query on the database.

Of course this is just a sample, there is better ways to do that, use a open connection to query bla
bla bla but let do this thing this way just for the sample, right?

When running this sample you can see this on your browser:

58

Figure 5.5: XHTML code inserted

Cool uhn? But do not forget, you REALLY need to put this kind of thing inside a XHTML element.
But what is that RAW EXPRESSION TYPE there? I will explain. When you use EXPRESSION, if
the value of the expression have some special chars like ¡, ¿ and &, this will break your XML file with
the report data inside. So before storing the value, the htmlspecialchars() is called to convert all this
kind of chars in HTML entities. But if insert XHTML code this way, it really needs to keep all those
chars as they are. So using RAW EXPRESSION is avoiding the use of the htmlspecialchars function.

Now, suppose you have a complex PHP code that needs to be called as you process your report. Inserting
the PHP code there will be a little weird because the default output, don’t forget, is HTML, and if you
put PHP code there your web server will not know what to do with that.

The best way is the same approach as above, make a some function with your PHP code, or calling
it, available on the scope of the file and call it. Just take a look on the FOOTER element, it haves a
COL element with the TYPE=”EXPRESSION” (not need to take care of HTML special chars at least
here on this sample) calling the insert date() function. You can pass parameters and make the most
complex things there, just remember that what it returns needs to fit on the well-formed way a XML
file is done.

The simple result of this function will be

Figure 5.6: PHP function called

59

5.14 Subreports

Subreports are already there. Check the section where I told you about LINKS.

I created there two links, one for the city name and one for the customer name. On the customer
name, I used as example a file named getcustomerinfo.php and as a parameter I send the customer name,
returned using the current value from the SQL query, and it opens on another window. Here is your
subreport!

You can fire new reports from there, on this example, you can open another PHP file with another
PHPReport with all the info you want from that customer.

Please pay attention that if you want to reflect exactly data that can change while you’re creating
your report, maybe it’s a good idea on the first report create a table with the values you have on that
specific moment. Let’s suppose you have a summarize report where you have the customer name, and
the ammount the customer bought from you till the present moment. Let’s say I bought from you some
products, and it’s value sum is $100. You can create a link to another report there that “opens” all the
products description that compose that $100. But what happens if, after you create the first report that
show you the $100 ammount, I buy some more stuff, let me say, more $50? Your first report will show
you $100, then the subreport will show you $150. That’s no good.

The first thing that will happen is you write to me and say “this thing does not work” ehehe. :-
)

So, to make this kind of report (where the subreports values can change after you create the “root
report”), create a temporary query with the subreports data, then create the first report based on the
temporary table, and make the subreports query this table also. So, the report and the subreports will
reflect the same values.

Suppose I bought from you:

• Slayer - DVD War at the Warfield - $15

• Slayer - DVD Still Reigning - $15

So I have a $30 total, and if I made a master report for this data, using for example

select customer name, sum(value) from orders order by customer name

it will show you the 30 bucks.

But if I buy “Primus - DVD Hallucino-Genetics Live 2004 - $20” five minutes after you create your
master report, the subreports that detail for example

select customer name, product, value from orders

will show you that latest bought DVD also and tell you that my ammount is $50.

To avoid that, create a temporary table like

create table orders putatimestamphere as select customer name, product, value from orders

and make your master report query it

select customer name, sum(value) from orders putatimestamphere order by customer name

and also your subreports

select customer name, product, value from orders putatimestamphere

After you ensure that don’t need the table for the master and subreports, you can safely drop it.

60

Chapter 6

API

6.1 Functions

6.1.1 Functions you can use inside the COL element

The functions on this section you can use inside the COL elements in your XML report layout file. You
can reach them from your PHP code also, but they just will be useful when the report is running.

getValue(<field name>)

Returns the current value of the FIELD on the current GROUP.
It’s the COLUMN value of the current ROW being processed.

getSum(<field name>)

Returns the sum of the FIELD on the current GROUP.

getMax(<field name>)

Returns the maximum value of the FIELD on the current GROUP.

getMin(<field name>)

Returns the minimum value of the FIELD on the current GROUP.

getAvg(<field name>)

Returns the average of the FIELD on the current GROUP. It’s the max/the row count.

getRowCount()

Returns the current row count of the GROUP.

getRowNum()

Returns the current row number.

getPageNum()

Returns the current page number.

getParameter(<name>)

Returns the value of the parameter with the specified name.

61

6.1.2 Functions you can use in your PHPReportMaker object

The functions on this section can be used on your PHPReportMaker object. For example,

$oRpt = new PHPReportMaker();
$oRpt->function goes here();

run()

This function must be called after all the others you may call here. It will run the PHPReports engine
and make things work.

setXML(<file>)

Sets the file path where your XML report layout file is. You need to tell the PHPReportMaker object
what file to use.

getXML()

Returns the current file name informed on setXML(). See above.

setXSLT(<file>)

Sets the file path of the XSL file used to transform the XML report layout file to the PHP code. You
don’t need to deal with this unless you want to test/debug PHPReports with a self-made custom XSL
file.

getXSLT()

Returns the current file name informed on setXSLT(). See above.

setUser(<user>)

Sets the user name used to open the database connection. You can store it also on the XML file on the
USER element, but if your XML file can be read people will know usernames from your network. This is
not a good idea, so use the setUser() function. This function overwrite the contents of a USER element,
if there is one.

getUser()

Returns the current user name informed on setUser(). See above.

setPassword(<password>)

Sets the password used to open the database connection. You can store it also on the XML file on the
PASSWORD element, but if your XML file can be read people will know a database password. This is
a VERY BAD IDEA, so use the setPassword() function. This function overwrite the contents of a
PASSWORD element on the XML file, if exists.

getPassword()

Returns the current password informed on setUser(). See above.

setConnection(<connection>)

Set the database connection string. For Oracle, for example, is the TNS entry name. This function
overwrite the contents of a CONNECTION element on the XML file, if exists.

62

getConnection()

Returns the current connection string informed on setConnection(). See above.

setDatabaseInterface(<interface>)

Sets the name of the database you’re connecting. You MUST inform this, because if you did not,
PHPReports will not know on what type of database it will connect and will fail to load it’s interface.
You can check the available interfaces on the database directory under the PHPReports directory. Some
interfaces are adodb, informix, interbase (firebird), mssql (Microsoft SQL Server), mysql, odbc, oracle,
peardb, postgresql. This function overwrite the contents of a INTERFACE element on the XML file, if
exists.

getDatabaseInterface()

Returns the current database interface string informed on setDatabaseInterface(). See above.

setDatabase(<database>)

Sets the name of the database that will be selected after the connection is open. This function overwrite
the contents of a DATABASE element on the XML file, if exists.

getDatabase()

Returns the current database informed on setDatabase(). See above.

setSQL(<sql>)

Sets the SQL query string. Using this function allows you to create the query the way you want before
sending it for processing. If you store your query in the SQL element on the XML file, it will always be
static. But if you use this function, you can manipulate it the way you want. This function overwrite
the contents of a SQL element on the XML file, if exists.

getSQL()

Returns the current SQL query string informed on setSQL(). See above.

setParameters(<array>)

Sets the array parameters. You can reference to it from your XML file using the getParameter(<name>)
function. It’s a good idea using it by name reference and not numeric reference, I mean, ”myparameter”
and not 0 is more clear.

getParameters()

Returns parameters array informed on setSQL(). See above.

setCodeOutput(<file>)

Sets a file (need write permission) where the PHP generated code will be written. If null, the code will
remains on the memory. This function is useful for debugging purposes, when you need to know the final
PHP code that will be used to create the XML file with your data.

getCodeOutput()

Returns the file name informed on setCodeOutput(). See above.

63

setOutput(<file>)

Sets a file (need write permission) where the final result of the report processing will be stored. If you’re
using for example the default plugin, will be a HTML file with all your report HTML code. Useful if
you don’t want to show the report on the screen and provide a link to it.

getOutput()

Returns the file name informed on setOutput(). See above.

setXMLOutputFile(<file>)

Sets a file (need write permission) where your data will be stored. It’s a XML file that will be used by
the output plugin (see below) to render your report. Useful when you need to see how your data is being
stored.

getXMLOutputFile()

Returns the file name informed on setXMLOutputFile(). See above.

setNoDataMsg(<message>)

Sets the message that will be displayed when no data is found after running your SQL query. Defaults
to “NO DATA FOUND” message.

getNoDataMsg()

Returns the message informed on setNoDataMsg(). See above.

createOutputPlugin(<plugin>)

Create an output plugin object. The output plugins are under the output directory (just common is
not an output plugin there).

setOutputPlugin(<plugin>)

Sets the output plugin that will be used to render your XML data file. Created with createOutputPlugin()
above. If no output plugin is set, PHPReports will use the default one.

getNoDataMsg()

Returns the name of the output plugin informed on setOutputPlugin(). See above.

setEnvObj(<id>,<object>)

Put an object/class inside the environment array to be returned on the COL element using getEnvObj().

getEnvObj(<id>)

Get an object/class from the the environment array.

saveTo(<file>)

Sets a file (needs write permission) where your report will be saved, for later retrival with the output
plugin loadFrom() function.

save()

Saves your report on the file informed on the saveTo() function (see above). You’ll need PHP compiled
with zlib and md5 support.

64

preview(<XML>)

Preview your XML layout report, with no data yet.

65

6.2 XML

6.2.1 REPORT

Refers to the main report object, the one who contain the others.

Elements

TITLE The report title.
PATH The path where the PHPReports classes are.
BACKGROUND COLOR On the hex format.
BACKGROUND IMAGE A valid URL to it.
CSS A valid URL to the CSS file.
SQL Your SQL query to ask for it on the database.
USER The user id to open the database connection.
PASSWORD The password to open the database connection.
CONNECTION The database connection name to use (ex: the Oracle TNS entry name).
INTERFACE The database interface to use.
NO DATA MSG Customized message when no data is found.
TEMP Not used now - only here to valid the old DTDs files.
DEBUG Used to show debugging messages through the report.
FORM Used to create a HTML FORM with your report.
DOCUMENT The DOCUMENT element.
PAGE The PAGE element.
GROUPS The GROUPS element.

Attributes

MARGINWIDTH The margin width, in pixels.
MARGINHEIGHT The margin height, in pixels.
MAX ROW BUFFER Maximum number of rows to store on the memory before write it to a file.

The default value is 2500 rows.

6.2.2 CSS

The CSS files you can use in your report.

Attributes

MEDIA The type of media to use this CSS file. You can specify, for example, ”screen” or ”print”.

6.2.3 FORM

Refers to an element used to create HTML FORMs with your report.

Elements

FORM NAME The form name.
FORM METHOD The form method.
FORM ACTION The form action.

6.2.4 DOCUMENT

The element where the values of all the report are stored, I mean, it’s the global values handler.

Elements

HEADER The header element.
FOOTER The footer element.

66

6.2.5 HEADER

The element with the ROWs used on the top of PAGEs/GROUPs.

Elements

ROW One or more ROW elements.

6.2.6 FOOTER

The element with the ROWs used on the bottom of PAGEs/GROUPs.

Elements

ROW One or more ROW elements.

6.2.7 ROW

The element with the COLs.

Elements

COL The COL element.

6.2.8 COL

The element with the FIELDs and expression values.

Elements

LINK The LINK element.
BOOKMARK The BOOKMARK element.
XHTML The XHTML element.

Attributes

TYPE Can be REGULAR, EXPRESSION, RAW EXPRESSION or FIELD.
NUMBERFORMAT It uses the sprintf (you know,C,PHP. . .) to format numeric values.
NUMBERFORMATEX Format values with your current thousand and decimal separators,

specify the decimal places.
CELLCLASS CSS class to format COL (cell).
CELLCLASSEVEN CSS class to format even COLs (cell).
CELLCLASSODD CSS class to format odd COLs (cell).
CELLCLASSEXPRESSION Expression to calculate the CSS class to format COL (cell).
TEXTCLASS CSS class to format the text inside the COL (cell).
ROWSPAN The number of ROWs to span.
COLSPAN The number of COLs to span.
WIDTH The COL width, in pixels.
HEIGHT The COL height, in pixels.
ALIGN The COL horizontal alignment (use HTML values).
VALIGN The COL vertical alignment (use HTML values).
SUPPRESS If the COL value will be printed or not if it’s equal the previous one (boolean).

6.2.9 PAGE

The PAGE element, where format the page features and show the values.

67

Elements

HEADER The HEADER element.
FOOTER The FOOTER element.

Attributes

SIZE The PAGE size, in rows.
WIDTH The PAGE width, in pixels.
HEIGHT The PAGE height, in pixels.
CELLPADDING The padding between the COLs (cells).
CELLSPACING The spacing between the COLs (cells).
BORDER The border size between the COLs, default to 0.
ALIGN PAGE alignment - think about the ALIGN on a HTML table.

6.2.10 GROUPS

The element that contain GROUPs elements.

Elements

GROUP The GROUP element.

6.2.11 GROUP

This is where you group your data, make breaks etc.

Elements

HEADER The HEADER element.
FIELDS The FIELDS element.
FOOTER The FOOTER element.
GROUP Another GROUP inside.

Attributes

NAME The NAME of the group.
EXPRESSION The expression where the GROUP breaks.
PAGEBREAK If you need a page break after the group breaks, put TRUE here.
REPRINT HEADER ON PAGEBREAK Put TRUE if you need to reprint the header on the page break.
RESET SUPPRESS ON PAGEBREAK If TRUE, reset all values suppressed when the page breaks.

6.2.12 FIELDS

This is just a container to ROWs that contain COLs that are of the TYPE=“FIELDS”.

Elements

ROW Some ROW elements.

6.2.13 LINK

An element to make a link to another URL.

Attributes

TYPE STATIC,DYNAMIC or EXPRESSION.
TARGET The target frame where the URL will open (same as HTML target).
TITLE The text that will appears on the tooltip (on mouse over).

68

6.2.14 BOOKMARK

An element to make a bookmark on the current COL.

Attributes

TYPE STATIC,DYNAMIC or EXPRESSION.
CELLCLASS CSS class to format COL (cell).
TEXTCLASS CSS class to format the text inside the COL (cell).

6.2.15 IMG

An element to insert an image file inside a COL. Put the image URL between and .

Attributes

WIDTH Image width (pixels).
HEIGHT Image height (pixels).
BORDER Image border (pixels).
ALT Alternate text.

6.2.16 XHTML

All kind of XHTML elements.

69

70

Chapter 7

FAQ

1. What is PHPReports?
It’s a program designed to make easier you create reports using XML template files running on a
web server environment.

2. What do I need to make it works?
You need an Apache web server (http://www.apache.org), PHP running on Apache (http://www.php.net)
and the Sablotron lib running on PHP4 (http://www.gingerall.com/charlie/ga/xml/p sab.xml) or
the XSL extension compiled with PHP5 (http://www.php.net/manual/en/ref.xsl.php).

3. Ok, but how can I install that? I already have Apache and PHP, but tell me about
Sablotron.
Please check this link (http://www.gingerall.com/charlie/ga/xml/x sabphp.xml) for more
info about how you can do that.
There’s also information about how to do that running on Windows.

4. My thirdy party web server doesn’t have Sablotron installed and I think it won’t
install it. What can I do?
Tell him about PHPReports and about XML and XSLT. Maybe he likes the idea and install
Sablotron. Or if he/she uses PHP5, just ask to compile it with XSL support.
If he doesn’t, so sorry, you can’t use PHPReports there. :-(

5. I’m happy you mention Windows. Could you help me with more info on how to install
it there?
No, sorry, I don’t use Windows to run that. I really can’t help you with that, but there is some
guys on the phpreports-users@lists.sourceforge.net that can. :-)

6. Can you help me to install Apache, PHP and Sablotron/XSL?
No, sorry. Every tool have some good tutorials on how to do it. Please check their websites.

7. I got a message unknown encoding ’ISO-8859-1’, and my report don’t works.
The ISO-8859-1 is the encoding I use for Latin characters. Maybe you don’t need it or your system
don’t allow it (Windows systems, most cases). It’s safe to remove the encoding parameter if you
don’t need chars like á,é,́ı,ó,ú, etc.

8. All my HTML escaped code is not working. I put something like <HR/> there
but I can’t see it on the browser.
Please put it inside a XHTML element now. To make all the elements go on a nice way to the
intermediate XML file, it will need it, because if you use escaped code it will be interpreted on the
first XLST transformation and will not match any of the pre-defined elements on the final code.

9. Is there a way to change the color of a COL (cell) based on its value?
Since 0.3.4 there is a way to do that. Use the CELLCLASSEXPRESSION COL parameter to do
that. For example, to render COLs with negative values in red and the other ones in black:

<COL CELLCLASSEXPRESSION="($this->getValue("VAL")<0?’RED’:’BLACK’)" TYPE="FIELD">VAL</COL>

71

10. I’m just seeing a blank page or a timeout message
If you are creating a huge report or your database is taking much time to execute your query, you
can face a PHP timeout. PHP scripts are allowed to run for 30 seconds. If this happens, you need
to extend your timeout using the set time limit() function. More about it here:

http://www.php.net/manual/en/function.set-time-limit.php

You need also check the disk space the webserver user is allowed to use. Remember that we
have a data file with all your data inside there, and if you have a 10000 rows report, you’ll need
some space there. Of course when we save it, it is compressed and becomes very shorter.

72

	What and how
	What is PHPReports?
	What is needed to use it?
	Does i need to pay you to use it?
	Tell me how it works

	Installation
	How install and check all the stuff

	Creating your reports
	Put some data there
	The XML report layout file
	The PHP code
	Making your report looks better
	Let there be colors
	The page element
	Sub groups
	The grand total
	Playing with the report
	Links
	Images
	Bookmarks

	Output plugins
	What is an output plugin?
	Default output plugin
	Bookmarks output plugin
	Page output plugin
	TXT output plugin
	Creating your own output plugins
	The XML report data file

	Some other things you need to know
	Setting your parameters from the PHP code
	Organizing your directory structure
	Breaking groups with more than one expression
	Save your report
	Restore your report
	Some few words about file integrity
	Exchanging formats
	Trying to make things faster
	Reuse your XML data
	Previewing your report
	Passing string parameters to your report
	Passing objects parameters to your report
	Inserting XHTML or PHP code into your COL
	Subreports

	API
	Functions
	Functions you can use inside the COL element
	Functions you can use in your PHPReportMaker object

	XML
	REPORT
	CSS
	FORM
	DOCUMENT
	HEADER
	FOOTER
	ROW
	COL
	PAGE
	GROUPS
	GROUP
	FIELDS
	LINK
	BOOKMARK
	IMG
	XHTML

	FAQ

